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ABSTRACT

In this paper we consider iterative recon-
struction in three-dimensional electrical impedance
tomography (EIT). We propose a special block-
nonlinear conjugate-gradient method for the recon-
struction. The proposed method requires less stor-
age in the computation, in comparison with the
traditional methods. This feature is highly im-
portant in three-dimensional imaging where large-
dimensional systems of equations are needed to be
solved, The proposed method is tested with a com-
puter simulation. The importance of inexact line
search in the optimization is also studied numeri-
cally.

NOMENCLATURE

e; — £’th electrode

F — Functional to be minimized

I, — electric current on ¢t electrode
I —currentpattern I = (I1,...,11)
J —Jacobian matrix J = 95 (px)

L — number of electrodes

Lo — regularization matrix

n — outward unit normal

pi, — search direction in line search

U = U(p) — mapping between resistivity p and
the boundary voltages

u — potential distribution

V' — voltage observations

v — additive gaussian noise

z¢ — contact impedance

ay, — Step parameter in line search

B — step parameter for search direction
A — regularization parameter

0f) — boundary of domain

p — resistivity distribution

p* — prior guess for resistivity

o — conductivity distribution

INTRODUCTION

EIT is an imaging modality used in medical,
industrial and geological applications. In EIT elec-
trical boundary measurements are used for recon-
structing the three-dimensional resistivity distribu-
tion inside the target. Alternating currents are in-
jected into the object through electrodes which are
attached on the boundary. The resulting voltages
are measured with the same electrodes, and the in-
ternal resistivity distribution is computed based on
the voltage measurements. This estimation prob-
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lem is a nonlinear and ill-posed inverse problem.

In some applications the two-dimensional
models are adequate in EIT. However, in most
cases the three-dimensional modeling is needed.
The injected currents spread out in three dimen-
sions, and if this is not taken into account in the
models, off-plane structures may cause large errors
in the reconstructions. Three-dimensional model-
ing, however, results in solving large-dimensional
systems of equations; in realistic EIT problems,
for example in head imaging, thousands of un-
known resistivity parameters are to be determined.
The computations take a lot of computer time and
storage, and therefore the solution method plays
a significant role. Because of the nonlinearity
and ill-posedness of EIT standard optimization ap-
proaches can not be utilized.

In this paper a finite element-based method
for the reconstruction of three-dimensional resis-
tivity distributions is used. The proposed method
is based on the so-called complete electrode model
that takes into account the presence of the elec-
trodes and the contact impedances. We have stud-
ied different types of iterative optimization meth-
ods for the solution of the inverse problem. A
special nonlinear conjugate-gradient method for
3D EIT is proposed. The advantage of the
conjugate-gradient methods is that the expense
of inverting large dimensional matrices can be
avoided. In addition, in the proposed block-
nonlinear conjugate-gradient method the gradients
needed for the search direction can be computed in
separate blocks. This reduces further the need of
storage in the computation and allows paralleliza-
tion. The proposed approaches are tested with a
computer simulation.

FORWARD MODEL

In EIT alternating currents I, are applied to
electrodes on the surface of the object and the re-
sulting voltages U, on these electrodes are mea-
sured. The resistivity distribution p is recon-
structed based on the voltage measurements. In the
case of additive noise the observation model of EIT
is of the form

V=U(p) + v, Q)

where V' is a vector including the RMS-values of
the measured voltages, U is a model between the
resistivity p and the measurements, and v is addi-
tive observation noise.

The most accurate for EIT is called the com-
plete electrode model [1,2]

V-(oVu) = 0, 2€Q 2)
u+2ga—u = Up,x€e, =1,...L(3)
on
o@ds = Ih,x€e, l=1,...,.L (4
e, ON
Ju L
oo = 0,2 eaﬂ\gq (5)

where o = p~! is the conductivity distribution, u
is the scalar potential distribution, n is the outward
unit normal on the boundary 02, z, are the contact
impedances, L is the number of electrodes, e, de-
notes the ¢’th electrode and Q2 C R? is the object.
In addition, the charge conservation law

L
Y I=0 (6)
=1

must be fulfilled. Furthermore, in order to find a
unique solution for the forward problem, the refer-
ence point for the potential has to be fixed. This
can be done for example by setting

L
S Ur=0. (7)
=1

The existence and uniqueness of the solution for
the complete electrode model has been proven in
[2].

The forward problem of EIT is to compute the
potential v = u(x) and the voltages Uy, given the
resistivity distribution p, the contact impedances
z¢ and the current pattern I = (Iy,...,Ir). The
forward problem can be approximated using the fi-
nite element method (FEM). The FEM approxima-
tion of the complete electrode model (2-7) leads
to nonlinear observation model (1) where p is fi-
nite dimensional approximation of the resistivity
with respect to chosen basis. The weak form of
the complete electrode model was given in [2] and
its FEM implementation in three-dimensional case
in [3,4,5].

INVERSE PROBLEM IN EIT

In EIT the injected currents are known and
the formed voltages are measured. The inverse
problem is to determine the parameters p (resis-
tivity distribution) based on the observation model
(1). The inverse problem is both ill-posed and non-
linear. Due to ill-posedness of the problem, one
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has to consider minimization of the (generalized)
Tikhonov regularized functional

F(p) = |V =Ul(p, 20)l3+ X[ L2(p—p*)3 (8)

where V and U(p, zo) are the vectors consisting of
the measured and computed voltages on the elec-
trodes, respectively, A is the regularization parame-
ter, p* is the prior for the solution and L5 is the reg-
ularization matrix. Further, zq includes the contact
impedances z, which are assumed to be known.

ITERATIVE RECONSTRUCTION

In this section we consider iterative minimiza-
tion of the functional F'(p) in equation (8). Espe-
cially we concentrate on line search methods. The
general form for line search methods is

PE+1 = pr + QgPr 9)

where py, is the k' iterate, p;, is the search direc-
tion, and «y is (a scalar) step length parameter. An
example of line search methods is the steepest de-
scent method

Pre+1 = pr — . VE(py) (10)

where the search direction py is chosen to be the
negative gradient —V F'(py) which is known to be
the direction of the steepest descent.

Usually the line search methods require com-
putation of the gradient V F'(py), as in the case of
steepest descent method. If the functional to be
minimized is of the form (8) the gradient VF(py)
is [6]

VF(pr) = =J(pe)" b+ N Wa(pr, = p*) (1)

where J denotes the Jacobian J = %—g(pk), b=
V — U(pg), and the matrix Wo = LI L.

Computation of the Jacobian J in the case of
EIT has been considered for example in thesis [6].
An advantageous procedure is to compute the Jaco-
bian in block form, because this reduces the need
of storage required for computation. Further, this
method allows parallelization. Similar procedure
to compute the Jacobian has been utilized also for
example in optical tomography and is known as the
adjoint differentiation [7].

In addition to choosing the step length py in
line search (9), one also needs to choose the step
length «y. Instead of using fixed step length,
it is usually preferable to use inexact line search
[8,9,10]. In inexact line search the step length is

chosen adaptively in each iteration step. The meth-
ods usually require several evaluations of the gra-
dient V F' corresponding to each iteration step. In
practice, gradients are expensive to compute and
therefore it is advisable to use less expensive meth-
ods. In some cases an effective way to choose
the step parameter is to evaluate the functional
F(pr +aupy) corresponding to a few different val-
ues of ay, and fit a quadratic function to computed
values.

Nonlinear Conjugate Gradient Method
The conjugate gradient method [10] is an iter-
ative method for solving a linear system of equa-
tions
Ap=c, (12)

where A is n x n symmetric and positive definite
matrix. The conjugate gradient method also be-
longs to class of line search methods, and is of the
form (9). The search directions p; are chosen to
be conjugate directions. A set of nonzero vectors
{po,p1,p2,...,Pn—1} is said to be conjugate with
respect to the symmetric positive definite matrix A
if

piAp; =0, Vi#j. (13)
These directions are also linearly independent, and
the solution for the equation (12) is found in at
most n iteration steps.

The nonlinear conjugate gradient method
(NLCQ) is a line search method for minimizing
nonlinear functionals F'. Also in NLCG the search
directions py, are chosen to be conjugate directions;
here the choice of the matrix A in (13) is based
on linearization of the functional £'. In NLCG the
steepest descent direction is chosen to be the first
search direction and the next ones are linear combi-
nations of the steepest descent direction —V F'(py,)
and the previous search direction p_1, that is,

Pk = —VF(pr) + Brpr—1 - (14)

The scalar 3y, is to be determined by the require-
ment that px_1 and py must be A conjugate such
that ﬁo =0.

There are two algorithms for NLCG, named
as the Fletcher-Reeves algorithm and the Polak-
Ribiére algorithm [10]. The first one is of the
following form.

The Fletcher-Reeves algorithm:

Given pg
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Evaluate VF(po)
Setpo = —VF(po), k=0
While VF(pg) # 0 (or VF(pi) > ¢€)

Compute Qg
Pk+1 = Pk + QgPk
Evaluate VF(pgs1)
e VE(pri1)"VE(pr1)
h VE(pi)"VE (pr)
per1 = —VF(prs1) + BEEpr
E = k+1

end

We choose the step parameter «; in each itera-
tion step by using inexact line search as explained
above. Since in the case of EIT the functional F'(p)
is of the form (8), the gradient VF(py) is com-
puted by using equation (11). As explained earlier,
the computation can be performed economically
in block form. With this choice, we refer to this
method as the block-nonlinear conjugate-gradient
method.
In Polak-Ribiére method 3y, is computed as

pr _ VE(@p1)" (VE(2)41) — VF(2y))
k1 VF(xx)TVF (1) '

In order to assure that a new direction is descent
the condition that only positive 3/ are accepted
a condition

BEE = max{B[[, 0} (15)

has to be included in Polak-Ribiére method. The
condition (15) implies that when 5[ [% is negative
a new search direction is chosen to be the steepest
descent direction —V F(x41). In our numerical
example we use the Polak-Ribiére method, because
it has been shown to be more robust and efficient
than Fletcher-Reeves method, see [10].

The nonlinear conjugate gradient method as-
sumes that the functional F'(p) quadratic. If this is
not a good approximation the method may generate
poor search directions. For this reason the NLCG
method is sometimes improved by using restarting
in which the search direction p;, that does not suf-
ficiently decrease the functional F, is replaced by
the steepest descent direction. There are numer-
ous strategies for investigating if search direction
is good. A typical requirement is that the angle be-
tween consecutive search directions must be large
enough.

For details of nonlinear conjugate gradient
method to EIT, see thesis [6]. A similar method
was first applied to optical tomography in paper
[11]. The method has been applied to EIT also in
thesis [12] in the special case where the side con-
straint A?|| L2 (p — p*)||3 in equation (8) is A\?||p||3
corresponding to (ordinary) Tihkonov regulariza-
tion.

NUMERICAL STUDY

As a numerical test phantom a cylindrical
tank with 48 electrodes, 16 electrodes in three
planes was used, see Fig. 1. The radius of
the tank was 15 cm and height was 20 cm.

Figure 1: Geometry of the test phantom, and the
FEM discretization. The rectangles on the bound-
ary represent the electrodes.

To study the efficiency of the different re-
construction methods, the resistivity distribution
shown in Fig. 2 was generated. In the sequel this
distribution is referred to as true distribution. The
simulated EIT data was computed in a mesh of
6180 tetrahedral elements and 1434 nodes, and the
resistivity distribution was represented in piece-
wise linear basis. The tetrahedral elements formed
five layers, height of each layer being 4 cm. The
cut surfaces in Fig. 2 are taken from the middle
of each layer. As the figure indicates, there were
two inhomogeneities inside the cylinder, differing
from the constant background resistivity 300 Q2cm.
The resistivity of the lower inhomogeneity was
100 Q2cm in the first element layer from the bot-
tom, increasing linearly to the background value
300 Qcm inside the second layer. The resistivity of
the upper inhomogeneity was 500 £2cm in two up-
permost element layers, decreasing linearly to the
background value 300 £2cm inside the third layer.
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Figure 2: True resistivity distribution.

There are numerous possibilities to inject cur-
rent and measure voltages in three dimensions. In
this study, only in-plane current injection and volt-
age measurements between adjacent in-plane elec-
trodes were used. For each current injection the
voltages were measured on the remaining adja-
cent pairs of electrodes on each electrode plane.
The voltage measurements from the current carry-
ing electrodes were not used in the reconstructions
and therefore 2160 voltage measurements were ob-
tained. The reason for neglecting the voltages cor-
responding to the current carrying electrodes is that
improper knowledge of the contact impedances in
the real case may cause high errors in modeling
those measurements [13]. \oltage observations
were computed by applying the FEM to 3D com-
plete electrode model.

Zero-mean Gaussian observation noise was
added to the computed voltages. The observation
noise consisted of two parts. The standard devia-
tion (std) of the first part was 0.01% of the maxi-
mum voltage. The second part was inhomogeneous
white noise, each component of the noise vector
having std 1% of the value of the corresponding
observation.

In the inverse computations the resistivity dis-
tribution was represented in a piecewise constant
basis. The number of resistivity parameters was
2060. The initial guess for the resistivity distribu-
tion was chosen to be the best homogeneous esti-
mate, see [14]. As the regularization matrix Lo we
used a difference matrix corresponding to smooth-
ness prior. The regularization parameter A was

chosen by visual inspection, because the traditional
methods for choosing the regularization parameter
are not suitable in the case of EIT. It is worth to
notice, however, that in the real case the use of vi-
sual examination is not possible, since the true re-
sistivity distribution is unknown. The question of
choosing the regularization parameters in different
types of inverse problems is a topic of on-going re-
search. The aim of this study is not to consider
this topic. Instead, the aim is to compare the effi-
ciency and computational storage of different op-
timization methods applied to minimization prob-
lems with predetermined priors.

The Figure 3 represents the NLCG-estimate for
the resistivity distribution after 260 iterations steps.

500
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300
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200
150

100

Figure 3: Conjugate gradient reconstruction
after 260 iteration steps..

The two inhomogeneities inside the object are
well located. In addition, the absolute values of
the inhomogeneities are recovered relatively well.
This is also shown in Figure 4, which represents
the maximum and minimum values of the recon-
structed resistivity distributions in each iteration
step.

For comparison, we also computed the esti-
mates by using the steepest descent method (10)
and the Gauss-Newton method. In the case of func-
tional (8) the Gauss-Newton iteration gets the form

Pk+1 = Pk + O (J(Pk)TJ(Pk) + )\QW2>_1
(J(pe)" (V = Ulpr)) — N>Walpr, — p*)), (16)

see for example [6]. All the methods converged
to the same solution, since the same functional (8)
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was minimized in all methods. However, there
were differences in the convergence rates, compu-
tation times and in the computer storage needs.

500\ — — — — = === =
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200
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% 100 200

Figure 4: Convergences of the maximum and
minimum resistivity values of the reconstructions
during the iterations in NLCG. The dashed lines
mark the true minimum and maximum values.

The convergence of the Gauss-Newton method
was superior to NLCG and steepest descent
method. The maximum and minimum values of
the Gauss-Newton iterates are represented in Fig-
ure 5. The algorithm is practically converged al-
ready after three iteration steps.

CS10[0) e i i S I
400
300¢-
200
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Figure 5: Convergences of the maximum and min-
imum resistivity values of the reconstructions dur-
ing the iterations in Gauss-Newton method. The
dashed lines mark the true minimum and maxi-
mum values.

Figure 6 represents the convergence rates of
the three different optimization methods. As noted
above, the Gauss-Newton method converges most
rapidly. Further, the convergence rate of steepest
descent is seen to be far slower than the conver-
gence rate of the NLCG method.

Gauss Newton
—  Conjugate gradient

- Steepest descent

10 15 20 25 30
iteration steps

Figure 6: Comparison of the convergence rates.
Value of the functional F(p) in first 30 iteration
steps for different optimization methods.

The differences in the convergence rates are in-
dicated also in Table 1. The listed numbers of itera-
tion steps are the numbers of iterations required for
reducing the value of the functional F'(py) below
a certain predetermined level. The NLCG method
with restarting is also listed in the table. As the
figures indicate, the use of restarting does not have
a considerable effect in our example case. Table 1
also shows the computer storage needs in cases of
different optimization methods. The drawback of
the Gauss-Newton method is that it requires more
storage than the other methods. This is due to ma-
trix inversion required in each iteration step (16).
The NLCG method does not require much more
storage than the steepest descent method, but the
convergence rate is much better than in the case of
steepest descent method.

Tablel: Comparison of different optimiza-
tion methods. The memory need is expressed in
Megabytes.

Method Iterations | Memory need
Gauss-Newton 10 41.3230
NLCG 260 8.1984
- restarting 247 8.1984
Steepest descent 4 000 8.1654

Finally we studied the effect of inexact line
search in NLCG method. Figure 7 shows the con-
vergence of the iteration with inexact line search
and with two fixed step parameters ay. Inexact
line search has a remarkable impact on conver-
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gence rate. Further, the figure indicates that the
optimal values of the step parameter are far from
the standard choice o, = 1.

x107
]
1.2} T
—— inexact line search
l .
- - step parameter = 10°
L 0.8r
— '~ step parameter = 10%°
0.6}
0.4r
0.2r

5 10 15 20 25 30
iteration steps
Figure 7: Convergence of the NLCG iteration
with inexact line search and with two fixed step
parameters.

The effect of inexact line search was also tested
in cases of steepest descent and Gauss-Newton
method. As in the case of NLCG method, in
steepest descent method the inexact line search im-
proved the performance of the algorithm remark-
ably, where as in Gauss-Newton method it did not
have a significant effect on the convergence rate.

CONCLUSIONS
In this paper we studied iterative methods

in EIT. We proposed a novel block-nonlinear
conjugate-gradient method for EIT, and compared
it with traditional methods using a humerical sim-
ulation.

Three-dimensional imaging in EIT, especially
in cases of complex geometries, leads to large di-
mensional systems of equations, and the choice
of optimization method plays a significant role.
The features that one should consider when choos-
ing the optimization method are: 1) convergence
rate, 2) computation time, and 3) need of computer
storage. The convergence rate of Gauss-Newton
method was noticed to be superior to other meth-
ods. However, the Gauss-Newton iteration also
requires considerably more computer storage than
for example steepest descent method. The draw-
back of steepest descent method is the slow con-
vergence.

The proposed block-nonlinear conjugate-

gradient method was shown to converge much
more rapidly than the steepest descent method. In
addition, the need of storage is of the same order
than in the case of steepest descent method. These
features make the proposed method tempting in the
case of large dimensional problems.

The comparison of computation times is a bit
problematic, because the ratios of computation
times depend on the dimension of the problem, and
the capacities of the computer. In our example case
the geometry of the domain was simple, and the
number of unknowns was relatively small, 2060.
For this reason, in our case the computation time
was shortest for the Gauss-Newton method. How-
ever, when the number of unknowns gets larger the
Gauss-Newton method gets slower in comparison
with the NLCG method, and finally when the stor-
age limit of the computer is exceeded, the method
becomes completely inapplicable.
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